2,031 research outputs found

    Exploring Rigidly Rotating Vortex Configurations and their Bifurcations in Atomic Bose-Einstein Condensates

    Full text link
    In the present work, we consider the problem of a system of few vortices N5N \leq 5 as it emerges from its experimental realization in the field of atomic Bose-Einstein condensates. Starting from the corresponding equations of motion, we use a two-pronged approach in order to reveal the configuration space of the system's preferred dynamical states. On the one hand, we use a Monte-Carlo method parametrizing the vortex "particles" by means of hyperspherical coordinates and identifying the minimal energy ground states thereof for N=2,...,5N=2, ..., 5 and different vortex particle angular momenta. We then complement this picture with a dynamical systems analysis of the possible rigidly rotating states. The latter reveals all the supercritical and subcritical pitchfork, as well as saddle-center bifurcations that arise exposing the full wealth of the problem even at such low dimensional cases. By corroborating the results of the two methods, it becomes fairly transparent which branch the Monte-Carlo approach selects for different values of the angular momentum which is used as a bifurcation parameter.Comment: 12 pages, 7 figures. New improved result

    Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions

    Full text link
    We consider nonlinear analogues of Parity-Time (PT) symmetric linear systems exhibiting defocusing nonlinearities. We study the ground state and excited states (dark solitons and vortices) of the system and report the following remarkable features. For relatively weak values of the parameter ε\varepsilon controlling the strength of the PT-symmetric potential, excited states undergo (analytically tractable) spontaneous symmetry breaking; as ε\varepsilon is further increased, the ground state and first excited state, as well as branches of higher multi-soliton (multi-vortex) states, collide in pairs and disappear in blue-sky bifurcations, in a way which is strongly reminiscent of the linear PT-phase transition ---thus termed the nonlinear PT-phase transition. Past this critical point, initialization of, e.g., the former ground state leads to spontaneously emerging solitons and vortices.Comment: 8 pages, 8 figure

    Bright-Dark Soliton Complexes in Spinor Bose-Einstein Condensates

    Get PDF
    We present bright-dark vector solitons in quasi-one-dimensional spinor (F=1) Bose-Einstein condensates. Using a multiscale expansion technique, we reduce the corresponding nonintegrable system of three coupled Gross-Pitaevskii equations (GPEs) to a completely integrable Yajima-Oikawa system. In this way, we obtain approximate solutions for small-amplitude vector solitons of dark-dark-bright and bright-bright-dark types, in terms of the mF=+1,1,0m_{F}=+1,-1,0 spinor components, respectively. By means of numerical simulations of the full GPE system, we demonstrate that these states indeed feature soliton properties, i.e., they propagate undistorted and undergo quasi-elastic collisions. It is also shown that, in the presence of a parabolic trap of strength ω\omega , the bright component(s) is (are) guided by the dark one(s), and, as a result, the small-amplitude vector soliton as a whole performs harmonic oscillations of frequency ω/2\omega/ \sqrt{2} in the shallow soliton limit. We investigate numerically deviations from this prediction, as the depth of the solitons is increased, as well as when the strength of the spin-dependent interaction is modified.Comment: 10 pages, 4 figures. Submitted to PRA, May 200

    Beating dark-dark solitons in Bose-Einstein condensates

    Get PDF
    Motivated by recent experimental results, we study beating dark-dark solitons as a prototypical coherent structure that emerges in two-component Bose-Einstein condensates. We showcase their connection to dark- bright solitons via SO(2) rotation, and infer from it both their intrinsic beating frequency and their frequency of oscillation inside a parabolic trap. We identify them as exact periodic orbits in the Manakov limit of equal inter- and intra-species nonlinearity strengths with and without the trap and showcase the persistence of such states upon weak deviations from this limit. We also consider large deviations from the Manakov limit illustrating that this breathing state may be broken apart into dark-antidark soliton states. Finally, we consider the dynamics and interactions of two beating dark-dark solitons in the absence and in the presence of the trap, inferring their typically repulsive interaction.Comment: 13 pages, 14 figure

    Matter sound waves in two-component Bose-Einstein condensates

    Full text link
    The creation and propagation of sound waves in two-component Bose-Einstein condensates (BEC) are investigated and a new method of wave generation in binary BEC mixtures is proposed. The method is based on a fast change of the inter-species interaction constant and is illustrated for two experimental settings: a drop-like condensate immersed into a second large repulsive condensate, and a binary mixture of two homogeneous repulsive BEC's. A mathematical model based on the linearized coupled Gross-Pitaevskii equations is developed and explicit formulae for the space and time dependence of sound waves are provided. Comparison of the analytical and numerical results shows excellent agreement, confirming the validity of the proposed approach.Comment: 16 pages, 9 figure

    Mobility of Discrete Solitons in Quadratically Nonlinear Media

    Get PDF
    We study the mobility of solitons in second-harmonic-generating lattices. Contrary to what is known for their cubic counterparts, discrete quadratic solitons are mobile not only in the one-dimensional (1D) setting, but also in two dimensions (2D). We identify parametric regions where an initial kick applied to a soliton leads to three possible outcomes, namely, staying put, persistent motion, or destruction. For the 2D lattice, it is found that, for the solitary waves, the direction along which they can sustain the largest kick and can attain the largest speed is the diagonal. Basic dynamical properties of the discrete solitons are also discussed in the context of an analytical approximation, in terms of an effective Peierls-Nabarro potential in the lattice setting.Comment: 4 page
    corecore